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Abstract. Seasonal snowpack deeply influences the distribution of meltwater among watercourses and groundwater. During 

rain-on-snow (ROS) events, for instance, the structure and properties of the different ice and snow layers dictate the quantity 10 

of water flowing out of the snowpack, increasing the risk of flooding and ice jams. With ongoing climate change, a better 

understanding of the processes and internal properties influencing snowpack outflows is needed to predict the hydrological 

consequences as mild episodes and ROS events’ frequency increases. This study aims to develop a multi-method approach to 

monitor the key snowpack properties in a non-mountainous environment in a repetitive and non-destructive way. Snowpack 

evolution was evaluated using a combination of drone-based GPR, photogrammetry surveys and time domain reflectometry 15 

(TDR) measurements, tested during the winter of 2020–2021 at the Sainte-Marthe experimental watershed, Quebec, Canada.  

The experimental watershed is equipped with state-of-the-art automatic weather stations that, together with weekly snow pit 

measurements, serve as a reference for the multi-method monitoring approach. Drone surveys conducted on a weekly basis 

are used to generate georeferenced snow depth, relative density, snow water equivalent and average liquid water content 

maps. In between site visits, snowpack properties are monitored using TDR probes. 20 

Despite some limitations, the results show that the approach is very promising in assessing the spatiotemporal evolution of 

the key hydrological characteristics of the snowpack. Among others, results showed the prevalence of preferential pathways 

at the early stage of the ablation period, the difference in hydrological reaction to a ROS event between flat and sloped 

sections of the study area and the hydrological influence of solar radiation at the late stage of the ablation period. 

1 Introduction 25 

The seasonal snow cover is of great hydrological influence in cold regions. By acting as seasonal transient storage, it 

determines the amplitude of spring floods, the level of late summer flows and the recharge of aquifers (Dewalle and Rango, 

2008). Snowmelt floods are a cause of economic losses and sometimes loss of life (Ding et al., 2021), while insufficient 

aquifer recharge impacts water availability for agricultural and industrial uses, fresh water supply and the ecology of river 

systems (Dierauer et al., 2021). 30 
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Economic sectors, such as hydroelectricity production (Brown et al., 2018) and agriculture (Liu and Lobb, 2021) show high 

vulnerability to changes in the snow cover and related hydrological impacts. Changes in snow cover characteristics have 

been reported from cold regions. For example, a decline in snow-covered area has been observed over the Tibetan plateau 

(Zhang et al., 2015), along with losses in snowpack water storage in Europe (Magnusson et al., 2010), densification of 

snowpack in eastern North America (Hodgkins and Dudley, 2006; Ford et al., 2021) and decline of spring snow cover in 35 

western Canada (Najafi et al., 2017). Climate change projections anticipate a further alteration of snowpack characteristics. 

Due to climate change, seasonal snowpack depth is expected to diminish (Dierauer et al., 2021), the winter maximum snow 

water equivalent to decline (Sun et al., 2019) and the spring melt to occur earlier in the season (Gergel et al., 2017). 

Moreover, observations and models indicate an increase in the number of rain-on-snow (ROS) events during the winter (Li 

et al., 2019). Combined with changes in snowpack characteristics, those events are predicted to trigger an increase in winter 40 

flood and ice jam intensity and frequency (Morse and Turcotte, 2018; Andradóttir et al., 2021). 

Snowpack physical characteristics and hydrological behavior are deeply interrelated (Mas et al., 2018). While the snowpack 

structure controls internal water fluxes, liquid water movement, storage and phase change in the snowpack transform and 

modify that structure (Quéno et al., 2020). Within this context, monitoring the spatiotemporal evolution of snow cover 

properties appears essential for anticipating adverse climate change consequences on winter hydrology and groundwater 45 

recharge (Lindström et al., 2010). 

Snow depth (h), density (ρ), snow water equivalent (SWE) and liquid water content (LWC) are among the most measured 

physical quantities of the snowpack (Kinar and Pomeroy, 2015a). These four variables are considered as key properties for 

characterizing the snowpack’s hydrological behavior (Vionnet et al., 2021) and show high variability in time and in space, 

making them difficult to capture at the appropriate scale. 50 

Snow depth is widely monitored using ultrasonic sensors, with an accuracy of 2 cm (Doesken et al., 2008). More recently, h 

measurements using Global Navigation Satellite System Interferometric Reflectometry (GNSS-IR) have grown in popularity 

(Chen et al., 2021). Terrestrial laser scanning has been successfully used for h distributed measurements with a vertical 

accuracy of 10 cm (Prokop, 2008; Revuelto et al., 2015; Deems et al., 2017). Airborne photogrammetry shows great 

potential for h measurement. With a centimeter scale accuracy, this technique allows for the non-destructive monitoring of 55 

the spatial variability of h (Bühler et al., 2016a). However, airborne photogrammetry application is limited to open 

environments (Harder et al., 2020). By contrast, airborne lidar (light detection and ranging) h measurements have proven to 

be efficient in forest environments (Koutantou et al., 2021). Even with growing access to those remote measurement 

techniques, destructive manual measurements remain extensively used for snow monitoring (Leppänen et al., 2016). 

Indeed, h measurement using rods and rules is still seen as a reference to capture h spatial variability and/or to validate 60 

remote sensing measurements (Kinar and Pomeroy, 2015b). 

Snow density is commonly measured through gravimetric measurements or calculated from h and SWE measurements 

(Conger and Mcclung, 2009). In dry conditions, snow density can be estimated with a dielectric permittivity measurement 

systems such as the Finnish SnowFork (Hao et al., 2021). Other methods include time domain reflectometry (TDR), ground-
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penetrating radar measurement (Previati et al., 2011), neutron probe (Hawley et al., 2008) and diffuse near-infrared 65 

transmission (Gergely et al., 2010). 

Different methods are used to measure the spatial variation of SWE. Manual measurements consist of snow-coring to 

estimate sample volume and mass. The manual method is time-consuming, destructive, and of moderate precision (Sturm 

and Holmgren, 2018). Where hard layers are present, sequential sampling is required, making the method more labor 

intensive (Morris and Cooper, 2003; Paquotte and Baraer, 2022). Manual methods are subject to operational sampling errors 70 

and bias (Goodison et al., 1987). Automatic monitoring makes it possible to capture SWE variability temporally. The 

methods most often used are gamma ray monitoring (GMON), cosmic ray neutron probe (CNRP), snow pillows and plates, 

the system for acoustic sensing of snow (SAS2) and the snowpack analyzer (SPA-2). GMON and CNRP require site 

calibration, and the stationary version of SAS2 has a limited footprint (2–3 m of diameter) (Kinar and Pomeroy, 2015a; 

Royer et al., 2021). Moreover, the high price of automatic monitoring systems limit their large-scale deployment. Snow 75 

pillows and plates are limited to flat areas, while freeze and thaw events may affect their functioning. GNSS receiver-based 

SWE estimations are an emerging alternative to the above-mentioned automatic measurement systems. However, they still 

require calibration using a reference method (Yu et al., 2020). The use of satellite-based remote sensing for SWE 

measurement has received much attention over the past decade. For example, repetitive L-band measurements allow the 

InSAR applications to map SWE over large areas (Rott et al., 2003). However, the method still needs some improvements for 80 

application in wooded areas. Passive microwave remote sensing provides information over large areas on snow mass, which 

can be related to SWE (Foster et al., 2005). Thus, it provides coarse spatial data with a high degree of uncertainty (Mortimer 

et al., 2020). 

The most common in situ LWC measurement methods are based on snow dielectric constant measurements at single points 

of the snowpack. The SnowFork (Sihvola and Tiuri, 1986), the Denoth device (Denoth, 1995) and the A2 Photonic WISe 85 

sensor (Webb et al., 2021) are among the most popular devices to measure LWC. They all present an accuracy of around 1% 

of the volumetric LWC. The most accurate method, often used as a reference for those devices is freezing or melting 

calorimetry (Mavrovic et al., 2020). LWC may be monitored with radar (Lundberg et al., 2013), TDR (Lundberg et al., 2016) 

or devices such as SAS2 and SPA-2. 

So far, taken individually none of the methods presented here above can capture the spatiotemporal variability of the 90 

snowpack’s hydrological behavior at representative scales. 

Combining techniques that monitor the temporal evolution of the snow permittivity at a sub-hourly time step such as TDR, 

with those mapping its variation in space such as GPR is therefore seen as a promising approach to address this challenge 

(Godio et al., 2018). Different empirical fuctions have been developed to relate ρ and LWC to the measured permittivity (Di 

Paolo et al., 2018; Frolov and Macheret, 1999). In dry conditions, LWC can be neglected, leaving a direct relation between ρ 95 

and the relative permittivity. In wet conditions, either assumptions are made on ρ variability from spot measurements (e.g., 

Webb et al. (2020); Yildiz et al. (2021)) or ρ maps must be produced using a separate method. In that regard, the LWC 

estimation from frequency-dependent attenuation of the GPR signal proposed by (Bradford et al., 2009) shows great 
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potential. As SWE can be calculated from ρ and h, measuring h from methods such as drone-based photogrammetry or lidar 

can provide more direct and precise SWE estimation (Lundberg et al., 2016). 100 

One of the main drawbacks of using GPR over the snowpack is the required contact between the GPR carrier and the snow, 

which affects snowpack integrity, makes subsequent surveys not fully representative of natural conditions. Recently 

developed drone-based systems provides non-invasive and large-scale monitoring of snow cover properties (Bühler et al., 

2016b). To our knowledge, there has been very little research to date using drone-based radar measurement for snow 

property monitoring (Jenssen and Jacobsen, 2020). 105 

The present study aims to monitor the spatiotemporal variability in h, ρ, SWE and LWC of a snowpack over flat and sloped 

area with a non-destructive approach. This objective is achieved by developing and testing an original combination of drone-

based photogrammetry, drone-based GPR and continuous automatic monitoring including TDR, and field measurements. 

2 Study site and condition 

The study region is the experimental watershed (BVE) of Ste-Marthe, located approximately 70 km west of Montréal, in 110 

Quebec, Canada (45.4239°N, 74.2840°W) (Figure 1.a). The main station of the BVE Ste-Marthe is situated at 120 m.a.s.l. in 

an approximately 200 m2 large forest clearing (Fig 1.b). A distinction is made between two different topography areas of the 

clearance, one categorized as flat and the other as sloped (10%). The main station hosts an automatic weather station (AWS) 

that measures various hydroclimatic variables. All data were recorded using a CR1000 data logger (Campbell Scientific). 

Monitored variables used for the purpose of this study are presented in Table 1. The snowpack outflow at the snow/ground 115 

interface was measured thanks to a custom-built 2.25 m2 snow lysimeter. 

The frozen ground depth was estimated by interpolation of ground temperatures measured at thermometers buried in the 

ground from -10 to -60 cm at 10 cm depth intervals. To avoid interpreting snowpack temperature data that could have been 

influenced by solar radiation or by contact with air, snowpack temperature measurements are not considered after March 17, 

2021, the day the snow height decreased below 40 cm. 120 

Measurements used in this study took place during winter, from February 26, 2021 to March 26, 2021. Two rain-on-snow 

(ROS) events occurred during this period. The first ROS was observed from February 28 to March 1, and the second from 

March 9 to 12. 

Four drone-based surveys were made during that period on February 26, March 5, March 12 and March 19. Figure 2 presents 

the AWS measurements of interest over the study period. February 26 is considered as the last survey before the end of the 125 

accumulation period, just before the day of maximum snow depth of the winter (February 27). On that date, the snowpack 

was cold (at least between 0 and +30 cm) and had not been affected by any significant ROS or major melt event yet. 

Between February 27 and March 5, the date of the second survey, the snowpack was first affected by a mild weather episode 

of more than 24 hours ending with a ROS event. This episode warmed up the snowpack to nearly 0°C at all measured depths, 

generated a substantial outflow at the base of the snowpack and increased both the SWE and ρ. Interestingly, the outflow at 130 
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the snowpack’s base occurred while the measured snowpack temperatures were still negative, suggesting the presence of a 

preferential flow paths over the flat area. The mild weather episode was followed by a marked drop in air temperature, 

marking the start of a seven-day-long cold period. Over this cold period the snowpack temperatures dropped below 0°C, 

while SWE and ρ stabilized. Outflow at the snowpack’s base stopped 24 hours after the temperature decreased. 

Prior to the third survey on March 12, there was a four-day long episode of almost uninterrupted above 0C air temperatures. 135 

On March 11 the air temperature reached a maximum of 15°C and a ROS event occurred. It took two days for the warm 

conditions to warm the snowpack up to 0°C and to generate outflow at the snowpack’s base. The timing and amplitude of the 

outflow suggest a more homogeneous flow path was present at the time. 

March 12 marked the last day of the second mild episode. Snow depth decreased by almost 30%, while SWE remained 

almost unchanged since the last survey, despite substantial liquid precipitations being recorded. Snowpack temperatures and 140 

outflow indicate that at least some of the snowpack layers were wet at the time of the survey. At the end of March 12, the air 

temperature gradually decreased below zero. From that time, air temperatures remained negative until March 17. A freezing 

front slowly moved down the snowpack, and an interruption of the outflows was observed over that period, suggesting a 

gradual drying of the snow layers. From March 17 to 19, the dominant warm conditions brought the snowpack temperatures 

back to the melting point. An outflow of minor amplitude compared to those observed during the two first warm episodes 145 

was measured only on March 18. On the March 19 survey, the air temperature dropped down to -2°C. 

After March 19, a strong diurnal signal in the outflow marks the start of an uninterrupted loss of mass from the snowpack. 

Note that over the studied period, at least part of the ground remained frozen, creating a quasi-impermeable barrier to water 

infiltration (Dingman, 1975). 

3 Methods 150 

The spatiotemporal variability of h, ρ, SWE and LWC was assessed by combining different methods with different sampling 

approaches. Table 2 provides an overview of the different methods used. They are split into three categories, depending on 

the frequency of measurements and the spatial coverage. Repetitive surveys conducted on the two different areas are used to 

produce maps of the four studied variables on a weekly basis. Continuous and repetitive measurements at a single point are 

used as a reference to evaluate the maps accuracy at a given point of the study area. TDR probes represent an exception to 155 

that rule. A total of eight probes were split between two spots, one within the flat area and the second within the sloped area. 

At each spot, probes were placed on different hard layers on the snowpack. These layers were identified as possible vectors 

for lateral flow (Evans et al., 2016). 

3.1 Manual measurements 

Snow pits were excavated in the flat area following the method presented by Fierz et al. (2009). For each pit, layer 160 

identification was followed by a sequential depth, density and snow temperature measurements. Each layer was isolated 
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from the preceding layer using a thin metallic plate and sampled using a metallic cylinder of 0.3 dm2 or a cylindrical plastic 

sampler with a surface of 0.5 dm2. The sample mass was measured in situ with a precision scale of ±1 g. 

Punctual LWC measurements were made using an A2 Photonic WISe Sensor (A2) at the snow pit. Two vertical 

measurement profiles were created for each snow pit. Even if the manufacturer’s device precision is ±1% of LWC, we 165 

anticipate a higher uncertainty, as measurement through ice layers was not possible. 

Manual measurements were used to estimate the bulk properties of the snowpack. Bulk h and SWE were just calculated by 

summing the individual layer ones. Bulk ρ and LWC were calculated by taking the weighted mean of the measurements 

based on layers’ length. 

3.2 TDR monitoring 170 

The CS610 probes were controlled using a TDR200 (both from Campbell Scientific). Each probe was calibrated according to 

the Campbell Scientific guidelines in the laboratory before deployment. Onsite, each CS610 was left lying over a hard layer 

without any guide or support. This setup was chosen to allow the probe to move downward together with the supporting hard 

layer as the snowpack settled. Indeed, maintaining probes at the exact same position above the ground triggers air pocket 

formation around the metallic rod, affecting the measurements’ accuracy (Pérez Díaz et al., 2017). As no visible differences 175 

in stratigraphy were observed between the flat and sloped areas over the accumulation period, hard layers supporting the 

probes were identified the same way: 

• α represents the ground level. Probes were installed January 8 in the flat area and January 26 at the base of the 

slope. At both locations, the snow layer on top of the ground was unconsolidated and heterogeneous. 

• β is a wind crust formed December 30–31. Probes were installed the same days as on layer α. The layer β was 180 

overlaid by unconsolidated granular snow. 

• γ is a hard snow layer formed in mild conditions on January 15. Probes were installed January 26. At that time, 

the hard snow layer was overlaid by a thin layer of fresh snow. 

• ε is an ice layer formed during a freezing rain event that occurred February 16. Probes were installed on top of 

that layer on February 22 in both locations. 185 

TDR probes measured the relative permittivity of the surrounding material. In snow, the relative permittivity is a function of 

the density and the liquid water content (Stacheder et al., 2009). With a 15-minute measurement interval, it was assumed that 

noticeable variations in permittivity between two measurements were due to changes in liquid water content, and that 

changes in density occurred over a longer timescale. 

3.3 Drone-based photogrammetry 190 

A Mavic 2 Pro UAV (DJI) was used to capture the RGB images used for photogrammetry. The Mavic 2 Pro was upgraded 

using a global navigation satellite system (GNSS) kit (TopoDrone) to use Post Processed Kinematic (PPK) to correct 

images’ location. The uncertainty claimed by the manufacturer is 3–5 cm in all directions. Corrections were made using a 
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RS2 (Reach) GNSS base station, with a manufacturer’s uncertainty of 4 mm in the horizontal direction and 8 mm in the 

vertical. After each site visit, collected images were processed using the photogrammetry software Pix4Dmapper (Pix4D) to 195 

produce digital surface models (DSMs). Ground control points, geo-localized using a 7700B GNSS rover (KlauGeomatic), 

were used for DSM validation and provide a 3–5 cm uncertainty. Finally, validated DSMs were evaluated and quantified 

using the Geographic Information System (GIS) software ArcGIS (ESRI). Following the protocol presented by Bühler et al. 

(2016a) and used by Yildiz et al. (2021), the GIS data was used to subtract a snow-free DSM produced on April 6, just after 

the complete thaw of the snow cover, from the DSM made using images taken over the winter. The final error of the drone 200 

photogrammetry is estimated at ±5 cm. 

3.4 Drone-based GPR permittivity measurement 

GPR surveys were performed using a Zond 1.5 GHz (Radar System Inc.) carried by a Matrice (M) 600 Pro drone (DJI). GPR 

integration and the flight control software (UGCS) were supplied by SPH Engineering. Maximizing GPR measurements 

requires flying at approximately 1 m above the surveyed surface, managed using a terrain-following system also supplied by 205 

SPH Engineering. The M600 was equipped with a 7700B GNSS (KlauGeomatic) allowing position correction via Post 

Processed Kinematic (PPK). Similar to the photogrammetry, corrections were made using the RS2 (Reach) GNSS base 

station. Surveys were performed over both the flat and sloped areas. Radargrams’ post-treatment was made with the Prism2 

software (Radar System Inc.). The GPR system was sampled every 512 ns over both flat and sloped areas, and the drone’s 

flight following north-south transects. For each survey, six transects on the flat area and nine transects on the slope were 210 

surveyed. The distance between two consecutive transects was 50 ± 10 cm. Post-treatment consisted of applying a 

background removal filter, adjusting the gain, and applying a time delay compensation. The ground/snow and snow/air 

interfaces were detected automatically wherever possible and manually where the layer boundaries were not recognized by 

the algorithm. The overall uncertainty for radargram georeferencing is considered to be the same as for photogrammetry. 

The velocity of the electronic wave within the snowpack (𝑣) and the snow height (h) extracted from the DSM are related as 215 

follows: 

𝑣 =
ℎ

𝑇𝑊𝑇/2
 ,            (1) 

where TWT is the two-way travel time of the wave within the snowpack in ns. TWT is extracted from the radargrams by 

taking the difference between the air/snow interface and snow/ground interface two-way travel times. 

The relative permittivity of the snowpack is a complex number. Its real part (εs') is calculated using Neal (2004) 220 

𝜀𝑠′ = (𝑣/𝑐)
2 ,            (2) 

where c stands for the velocity of light in a vacuum (taken as equal to 0.3 m/ns). 
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3.5 Drone-based GPR frequency-dependent attenuation analysis 

In wet conditions, the imaginary part of the permittivity of the snow (εs'') is estimated using the GPR frequency-dependent 

attenuation analysis method proposed by Bradford et al. (2009). In the standard GPR frequency range (10 MHz–1 GHz), εs' 225 

is strongly dependent on LWC and assumed to be independent of frequency. Assuming that the frequency-dependent 

attenuation of an electromagnetic wave through water is linearly related to frequency (Turner and Siggins, 1994), the 

attenuation coefficient over the GPR signal band can be written as 

𝛼 = α0 +
√𝜇0𝜀𝑠′

2𝑄∗
𝜔,           (3) 

Where 𝑄∗ representing the generalization of the attenuation quality parameter in the linear region of the attenuation, ∝0 the 230 

impact of low frequencies in the radar attenuation, and μ0 the permeability in the free space. 

Within the frequency range of 1 to 1500 MHz, 𝑄∗ is assumed to be constant (Bradford et al., 2009) and related to εs'' as 

follows: 

𝑄∗ =
𝜀𝑠
′

2𝜀𝑠
′′,            (4) 

Where a GPR generates waves in the form of a Ricker wavelet, the frequency f0 of the spectral maximum of the GPR wave 235 

measured at the snow/air interface on the radargram and the frequency ft of the spectral maximum measured at the 

ground/snow interface are related to Q* (Bradford, 2007): 

{
 
 

 
 
1

𝑄∗
=

4

𝑇𝑊𝑇

𝜔0
2−𝜔𝑡

2

𝜔0
2𝜔𝑡

𝜔0 = 2𝜋𝑓0

𝜔𝑡 = 2𝜋𝑓𝑡

 ,           (5) 

 f0 and ft were measured by randomly sampling at least 10 points for each GPR line. For each selected point, readings were 

made on five consecutive traces using the Prism2 software. Peak frequencies for each point were calculated by taking the 240 

median of the measurements. When at least one trace showed a higher frequency at the ground/snow interface than at the 

snow/air interface, two extra traces were used; εs'' was then computed using equations (4) and (5), with εs' being calculated 

using equation (2). 

LWC and the relative density of dry snow (ρd) were then calculated with the following set of empirical equations proposed 

by Tiuri et al. (1984) and Sihvola and Tiuri (1986): 245 

𝜀𝑑
′ = (1 + 1.7𝜌𝑑 + 0.7𝜌𝑑

2) ,          (6) 

𝜀𝑠
′ = (0.1𝐿𝑊𝐶 + 0.8𝐿𝑊𝐶 )𝜀𝑤

′ + 𝜀𝑑
′ ,         (7) 

𝜀𝑠
′′ = (0.1𝐿𝑊𝐶 + 0.8𝐿𝑊𝐶)𝜀𝑤

′′ ,          (8) 
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where εd' is the bulk permittivity of dry snow and εw' and εw'' are respectively the real and the imaginary parts of the relative 

permittivity of pure water. 250 

Equations 2.6, 2.7, and 2.8 were established for a measurement frequency of 1 GHz and are assumed to remain valid for the 

purpose of the present study. 

The relative snow density (ρ) is then calculated with the following equation: 

𝜌 = 𝜌𝑑 + 𝐿𝑊𝐶,            (9) 

Finally, the SWE is calculated using the h extracted from the DSM produced by photogrammetry: 255 

𝑆𝑊𝐸 = ℎ. 𝜌 ,            (10) 

LWC maps were then produced by extrapolating the punctual results to areas value using a Kernel algorithm with the 

Geostatistical Wizard module of the ArcGIS software. 

For the surveys on February 26 and March 5, the snowpack was assumed to be dry, as the survey was preceded by several 

cold days with a snowpack temperature below 0°C. The SWE was determined using the assumptions that εd'=εs', ρs=ρd, and 260 

LWC=0. 

For the surveys on March 12 and March 19, the SWE was determined following the GPR attenuation analysis. 

4 Results 

4.1 Drone-based photogrammetry 

None of the control points used in each survey showed significant difference with the PPK-based DSM produced by 265 

photogrammetry, validating the method for the purpose of this study. Further, the adjustments made at the final stage of the 

DSM production, when ground control points were compared with PPK-based points, were all under 3 cm, which is within 

the expected accuracy of the PPK devices. 

Maps of snow depth obtained from the photogrammetry are presented in Figure 3. 

The individual maps make visually accurate representations of the study site. Prints of the paths we used over the entire 270 

season (e.g., lines in yellow on the 26/02 map) show consistent reductions in snow depth compared to pristine areas. 

Similarly, extra snow accumulation in drainage ditches (e.g., brown area in the bottom left area of the 19/03 map) is well 

marked and consistent between the survey dates. Overall, those maps are considered as satisfactory for the purpose of the 

study. 

By comparing the different survey dates, we observe that the snow depth decrease that occurred between February 26 and 275 

March 5 appears to be homogeneous over the entire area, with no differences between the flat and sloped areas being 

visually noticeable. This is not the case when comparing the March 12 map to the two first dates. The severe ablation and/or 

settling that affected the study area impacted the sloped area more than the flat one. Changes in snow depth were less 
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pronounced between March 12 and 19 than for the previous period. However, the difference between the flat and sloped 

areas remained important. 280 

Overall, Figure 3 shows that the sloped and flat sections had comparable snow depths during the accumulation period but 

reacted differently at the start of the ablation period, with a faster loss of height in the sloped area than in the flat one. 

4.2 TDR monitoring 

TDR measurements of the snow’s relative permittivity were normalized to the February 26 at 12:30 values to allow 

comparison between the different layers, areas and times (Figure 4). As described in the Methods Section, fast variations in 285 

relative permittivity are associated with a change in LWC. Timewise, we observe that the first mild episode, starting 

February 27, generated a tiny increase in LWC above the upper hard layer a day after it started. Interestingly, the lysimeter 

measured outflow at the base of the snowpack in the flat area 24 hours before any moisture increase was detected by the 

TDR probe placed on the ground in the flat area. Snowpack response to the February 28 ROS event occurred first at the 

bottom of the sloped area, followed by a limited increase in snow moisture above the hard snow layers. Detection of an 290 

increase in LWC at the base of the flat area occurred half a day after the increase for the sloped area, at a time that the air 

temperature had already dropped below zero. Past that time, normalized permittivity at all spots steadily decreased, reaching 

a plateau representative of the new dry densities of the snow layers. Differences observed in timing and amplitudes at the 

different probe locations suggest that liquid water flows followed preferential pathways, confirming what was assumed from 

AWS measurements. The LWC increased in response to the second mild episode, first at the base of the sloped area too. The 295 

increase was followed by an increase at the other probes 24 hours later, those above the β and γ layers being of very low 

amplitude. As was the case during the first mild episode, the strongest increase in LWC was measured over the sloped 

ground. At the end of the 10th of March, three of the four probed layers showed an increase in LWC, which was more 

pronounced in the sloped area than in the flat area. After March 10, in the sloped area the fluctuation of LWC above the γ 

layers started to mimic the one aboveground, but with a lower amplitude. This synchronism suggests that the sloped area’s 300 

preferential pathway flow-through mode started weakening. The sloped area showed a faster and more intense response to 

the mild episode starting March 17 compared to the flat area too. Unlike the flat area, the slope’s LWC fluctuation started 

exhibiting a strong diurnal pattern, whose peak occurred a couple of hours before the peak in air temperature and the peak in 

lysimeter outflow. This suggests the slope was more responsive to the incoming solar radiation compared to the flat area. 

Overall, the TDR probes showed a faster and more intense response to mild warming episodes on the slope compared to the 305 

flat area, the presence of preferential pathways (particularly at the start of the ablation period), and a noticeably higher 

influence of solar radiation on the ablations of the sloped area compared to the flat one at the end of the study period. 

4.3 Drone-based GPR permittivity measurement 

For each survey day, each area, h was extracted from the DSM following the north-to-south transects covered by the M600 

pro during the GPR survey. Snow depth and snowpack bulk permittivity profiles of selected transects are shown in Figure 5. 310 
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On February 26, the flat area shows quite stable bulk permittivity and snow depth profiles. The slope transect exhibits 

slightly lower snow depth and higher bulk permittivity than the sloped section. The bulk permittivity over the sloped section 

appears more variable than the flat one too. The March 5 show limited changes compared to the 26th of February for both 

variables and both areas. 

The March 12 transects show a sharp change compared to the two first dates. Both areas exhibited a rise in bulk permittivity 315 

and a decrease in snow depth. Bulk permittivity profiles show gaps due to the GPR signal not penetrating fully through the 

wet snow. Ranging from 0.41 to 0.78, the sloped area bulk permittivity variability is more pronounced than of the flat area. 

On March 19, the snow depth in the flat transects remained almost similar to that measured on March 12. The bulk 

permittivity decreased to values situated between those of March 5 and 12. The sloped area transect exhibited a decrease in 

bulk permittivity, like that of the flat area transect, and its variability remained higher than in the flat section. On March 19, 320 

the main difference between the two sections was the snow depth. The sloped area showed a more pronounced decrease than 

the flat area. As no fresh precipitations were recorded between March 12 and 19, the decrease in permittivity in both sections 

can be interpreted as a decrease in LWC, which could have occurred together with snow densification in the sloped section. 

Overall, Figure 5 confirms the difference in response to the mild event of March 11 between the sloped area and the flat area, 

including a high moisture content for both areas and a more pronounced densification of the snowpack over the sloped area 325 

compared to the flat area. 

4.3 Drone-based GPR frequency-dependent attenuation analysis 

Results from the LWC calculation and interpolation are presented in Figure 6. 

Contradicting snow temperature profiles and A2 measurements, Figure 6 suggests the February 26 and March 5 snowpacks 

present LWC ranging from 0 to 3% with no visible differentiation between the sloped and flat areas. Both dates show a 330 

relative spatial heterogeneity in LWC with no clear common patterns between the two dates. 

The March 12 survey shows a general increase in LWC compared with the two previous surveys, and a differentiation 

between the two studied areas. The slope area exhibits the highest overall LWC, although both areas are spatially variable. 

Compared to March 12, the LWC map for March 19 has lower values in the sloped area compared to the flat area, making 

both areas difficult to differentiate. LWC values remains highly variable for both sections. 335 

Overall, Figure 6 confirms that, unlike the ROS event that occurred at the end of February, the sloped and flat areas 

responded in different ways to the March 11 ROS event. On the other hand, LWC non-null values seem unrealistic for the 

two first survey dates that followed the pronounced cold episode. In a similar way, the absence of a recurrent spatial pattern 

in LWC variations between maps of different dates suggests the method was not able to capture these variations in a detailed 

way. 340 
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5 Discussion 

Drone-based estimation of key snowpack variables 

In the present study, the spatiotemporal variability in h, ρ, SWE and LWC, four key proprieties of a snowpack, has been 

assessed using drone-based GPR and photogrammetry methods in a repetitive way. Figure 7 provides an overview of the 

variability in a form of boxplots and, where possible, compares drone-based measurements to those of the AWS and from 345 

snow pits. 

Photogrammetry results are in good agreement with those of the AWS and of the snow pits over the entire study period, with 

a possible slight overestimation in the two first surveys. Snow depth over the flat area consistently shows a narrow 

distribution. The slope is characterized by a lower snow depth and a larger variability than the flat, especially after the ROS 

event that occurred on March 11. 350 

The LWC boxplots in Figure 7 represent well the general evolution of the snowpack moisture content through time: a stable 

situation occurring between the first two survey dates, followed by a marked increase in snow moisture on March 12 and a 

slight decrease on March 19 (for the sloped area only). The boxplot also captures the difference in response to mild events 

between the flat and sloped areas. Compared to the A2 measurements, the boxplots show the method is not able to provide 

realistic LWC absolute values. Even if we consider that the A2 measurements did not sample the entire snow column and 355 

therefore might have underestimated the snowpack average LWC, the drone-based result appears by far overestimated. 

Although less obvious than for the LWC, ρ estimation appear to diverge from the reference measurements also. The drone-

based method underestimates ρ over the flat area compared with both the AWS and the snow pit measurements for the first 

two and the last dates, while overestimating it for March 12. Moreover, both the flat and sloped areas exhibit an unrealistic 

50% decrease in ρ between March 12 and 18, as no fresh snowfall occurred between those two dates. 360 

Calculated as the product of h by ρ, SWE boxes show similar characteristics to ρ. 

Interestingly, we note that while Figure 5 shows the bulk permittivity profile being coherent with TDR and AWS 

measurements, this was not the case anymore in the computed variables presented in Figure 7. As described earlier, the bulk 

permittivity of the snowpack is influenced by both ρ and LWC. Figure 7 therefore suggests that the method we applied failed 

to differentiate the relative influence of both variables. 365 

Our method makes use of empirical Equations (6), (7) and (8), which are commonly used in snow hydrology. According to 

Tiuri et al. (1984), Equations (7) and (8) are valid in pendular regime, for εs'≤2.6 (εs'≤3 for Colbeck (1982)), as opposed to a 

funicular regime. In a layered snowpack in which preferential flow occurs, it is realistic to hypothesize that both regimes 

occur in the snow column, making Equations (7) and (8) possibly not directly applicable to bulk relative permittivity 

measurements. 370 

Different empirical formulas relating the relative permittivity to ρ have been subsequently developed (e.g. Di Paolo et al. 

(2018); Frolov and Macheret (1999)). In the present study, we decided to use the formulas presented in Tiuri et al. (1984) as 

they are most commonly used in the literature. Assessing the other formulas might be a way to improve the absolute values 
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of key snowpack variables. As suggested by Webb et al. (2021), re-assessing the application conditions of the equation used 

in the present study is probably required. 375 

Fixing the relative density of the snow based on manual sampling or AWS values could represent another solution to the 

problem met in differentiating between the relative influence of ρ and LWC on bulk permittivity. However, this solution 

would not allow for the capturing of the spatial variability in ρ and therefore might bias calculations. 

 

Spatiotemporal variability in snowpack characteristics 380 

TDR monitoring, drone-based photogrammetry and drone-based GPR have been shown to make a valuable combination for 

assessing the spatiotemporal variability in key snowpack variables. The use of photogrammetry to map snow depth over the 

study area has given the opportunity to calculate bulk permittivity from repetitive drone-based GPR surveys. Both bulk 

permittivity and snow depth profiles agreed with site observations and reference measurements. Converting the bulk 

permittivity into absolute ρ, LWC and SWE values do not provide the expected results even if the temporal evolution of those 385 

parameters was captured in an acceptable way. TDR monitoring complemented the drone-based measurements, providing 

both high temporal resolution and layer-based snowpack relative permittivity time series. Except for the ρ, LWC and SWE 

calculations, the different methods were highly consistent compared to each other, allowing for the capture of the flat and 

sloped areas responses to changes in meteorological conditions. 

More precisely, the results obtained in this study show that: 390 

- The flat and sloped areas had comparable responses to the first ROS event of the study period, which occurred at 

the end of February. That event produced snowpack outflows and increases in LWC, especially at the base of both 

areas. The sloped area, however, showed a faster and more intense response than the flat one. 

- The first ROS episode did not modify the snowpack’s ρ and h profiles in a substantial way. Both study areas 

exhibited characteristics of preferential flow pathways. 395 

- The second ROS event that occurred on March 10 affected the sloped area in a different way than the flat one, both 

areas showing important differences in h, LWC and ρ in the March 12 surveys. 

- The third mild episode that occurred from March 16 to 18 did not drastically modify the characteristics of both 

areas compared to the March 12 situation. However, the slope showed faster rates of melt/ablation, probably due to 

its southward orientation. 400 

6 Conclusion 

A combination of TDR monitoring, drone-based photogrammetry and drone-based GPR was used in the experimental 

watershed of Ste-Marthe (Quebec, Canada) over the winter of 2020–2021. The suite of methods showed comparable snow 

accumulation over flat and sloped areas, with comparable characteristics lasting after the first ROS event. The second ROS 

event at the start of the ablation season led to differences in response between the two areas. 405 
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Drone-based GPR was very instructive when interpretation was based on bulk permittivity results but showed limitations for 

mapping ρ, SWE and LWC. There are questions about the applicability of empirical equations used given the site conditions. 

The results suggest the empirical equations should be reassessed for conditions that differ from the ones they were 

formulated for. The method did not allow getting the full benefit from applying the GPR frequency dependant attenuation 

method to estimate LWC in snowpack. The method however shows promise. In the 2020-2021 winter, the radargram 410 

obtained using a 1.5 GHz GPR was not detailed enough to differentiate between the main snowpack layers. However, efforts 

should be continued in this regard, as the 2020–2021 snowpack was characterized by a relatively low snow depth and an 

uneven disposition of the ice layers in the snow column. 
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Figure 1: Study Site. a) Location of the BVE Ste-Marthe. b) Overview of the main station; blue areas represent the two studied 580 
areas and dashed dark blue ellipse represent the zone used for snow pit. Numbers identify devices of interest for the present study: 

(1) sonic sensor, (2) ground and snow temperature sensors, (3) shielded precipitation gauge, (4) snow lysimeter, (5) SWE sensor 

and (6) TDRs. c) DSM of the main station area. 
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 585 

Figure 2: AWS measurements during the winter 2022 ablation period. Vertical dashed lines indicate field measurements days. 

Variables’ names are indicated in each subfigure. Details about variables’ descriptions and measurements are given in Table 1. 
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Figure 3: Snow depth calculated by photogrammetry for the four dates covered in this study. 
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 590 

Figure 4: Normalized permittivity measured by TDR probes in the sloped and flat sections. Probe positions in each graph are 

shown in drawings representing a simplified description of the snowpack. Vertical dashed lines mark field visit dates. 
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Figure 5: Bulk permittivity and snow depth calculated for the flat and slope transects on February 26, March 5, March 12 and 

March 19. Adapted from Valence and Baraer (2021). 595 
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Figure 6: LWC calculated by GPR frequency dependent attenuation analysis. 
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Figure 7: Box plots representing the snowpack studied variables for the sloped and flat areas for each survey date. In the boxes, 600 
the central red line represents the median, and the bottom and top blue edges mark the 25th and 75th percentiles, respectively. The 

whiskers show the data ranges excluding outliers. Wherever existing, outliers are represented by a red cross. Circle markers 

represent reference values originating from the AWS (in blue) and snow pits (in black). Figures framed in blue were created with 

the assumption of a dry snowpack. 

  605 
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Table 1: List of the instruments used in this study. Accuracy is either given by the manufacturer or estimated for worst-case 

scenarios. 

Adapted from Paquotte and Baraer (2022). 

Variable Sensors Manufacturer Accuracy Timestamp 

Tair Hygrovue10 Campbell Scientific ±0.6°C 15 min 

Precipitation From P.E.T. station  ±4.5% 15 min 

h Ultrasonic (SR50A) Campbell Scientific ±1 cm 15 min 

Tn,cm 
Thermal profiler 

(CS230) 
Campbell Scientific ±0.2°C 15 min 

Outflow Lysimeter Homemade ±1% 15 min 

SWE SWE sensor (CS725) Campbell Scientific ±15 mm 6 h 

Permittivity (ε) TDR (CS610) Campbell Scientific ±5% 15 min 

 610 

 

Table 2: Methods combined in this study classified based on the sampling frequency and the spatial coverage. 

Variable Continuous, single point Repetitive, single point Repetitive, two surfaces 

h Sonic sensor Snow pit Photogrammetry 

ρ h / SWE Snow pit GPR 

SWE SWE sensor Snow pit GPR 

LWC TDR (2 points, 4 layers) A2 GPR  
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